Radiofrequency Ablation of Atrioventricular Nodal Reentry Tachycardia: A 14 Year Experience with 901 Patients at the Tel Aviv Sourasky Medical Center

Ian Topilski MD*, Ori Rogowski MD*, Aharon Glick MD, Sami Viskin MD, Michael Eldar MD and Bernard Belhassen MD

Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel

Key words: atrioventricular nodal reentry tachycardia, radiofrequency ablation

Abstract

Background: Atrioventricular nodal reentry tachycardia is the most frequent cause of regular, paroxysmal supraventricular tachycardia. Radiofrequency ablation of the slow pathway has been recommended as first-line therapy for curing AVNRT.

Objectives: To report a 14 year experience of RFA of the slow pathway in patients with AVNRT treated in our laboratory.

Methods: A total of 901 consecutive patients (aged 9–92, mean 50.8 ± 18.2 years) underwent RFA of the slow pathway. All patients had sustained AVNRT induced with or without intravenous administration of isoproterenol. A standard electrophysiologic method with three diagnostic and one ablation catheter was used in 317 patients (35.2%); in the remaining 584 patients (64.8%), only two electrode catheters (one diagnostic, one ablation) were used (“two-catheter approach”).

Results: Catheter ablation of the slow pathway abolished AVNRT induction in 877 patients (97.3%). In 14 patients (1.6%) the procedure was discontinued while in 10 (1.1%) the procedure failed. In 864 patients (95.9%) there were no complications. Transient or permanent AV block occurred during the procedure in 31 patients (3.4%), of whom 8 (0.9%) eventually required pacemaker insertion (n=7) or upgrade of a previously implanted VVI pacemaker (n=1) during the month following the procedure. The number of catheters used did not significantly affect the rate of results or complications of the ablation procedure. The success and complication rates remained stable over the years, although a significant trend for increased age and associated heart disease was observed during the study period.

Conclusions: The results of this single-center large study, which included patients with a wide age range, showed results similar to those of previous studies. The use of a “two-catheter approach” (one diagnostic and one ablation) was as effective and safe as a multi-catheter approach.

IMAJ 2006;8:455–459

* Dr Topilski and Dr Rogowski contributed equally to the study

AVNRT = atrioventricular nodal reentry tachycardia
RFA = radiofrequency ablation

For Editorial see page 497
Electrophysiologic study

After the patients gave informed consent, the electrophysiologic study was performed using standard techniques [16]. In the early years a multi-catheter approach was used, including the placement of three diagnostic electrode catheters in the coronary sinus, the right ventricular apex and the His bundle area, as well as an ablation catheter. Later, a “two-catheter approach” using a single diagnostic electrode catheter (placed in the high right atrium) and an ablation catheter was employed. A multi-catheter approach was also used for ablation of AVNRT when the mechanism of PSVT was unclear or after ablation of another arrhythmia. The ablation catheter was usually a Mansfield/Cordis/Webster catheter (temperature-guided or not) and less commonly a temperature-guided catheter (EP Technologies, Boston Scientific, MA, USA).

The baseline electrophysiologic study included atrial stimulation (rapid atrial pacing and/or delivery of one to three extrastimuli) as well as ventricular stimulation if AVNRT was not induced with atrial stimulation. If sustained AVNRT (lasting ≥ 30 sec) was not induced with this protocol, isoproterenol (1 μg/min) was administered at incremental dosage until the basic sinus rhythm increased by ≥ 20%, and the stimulation protocol was repeated.

Definitions

Dual AV node physiology was defined as a ≥ 50 msec increment in atrium-to-His (AH) or PR interval following a 10 msec decrement in coupling interval during single atrial extrastimulation or a ≥ 50 msec increment in AH or PR interval in consecutive beats after a 10 msec decrement in pacing cycle length during incremental atrial pacing [15].

Ablation procedure

RFA of the slow AV nodal pathway was performed according to a standard combined electrophysiologic-anatomic approach [17]. Briefly, the catheter tip of the ablation catheter was positioned at the His bundle area and progressively withdrawn along the tricuspid annulus, starting at the most posterior site (near the coronary sinus ostium) and progressing to the more anterior locus (closer to the His bundle recording site). RF energy was delivered with a temperature setting of 55–60°C using an initial 26 Watts power that was gradually increased up to 60 Watts if necessary. If an accelerated junctional rhythm was recognized within 30 seconds, the energy delivery was continued for a total of 1 minute. Administration of RF energy was discontinued upon occurrence of AV block, very rapid junctional rhythm, retrograde block during junctional rhythm, impedance rise, catheter displacement or severe chest pains.

Ablation of the slow pathway was diagnosed when, after RF application, dual AV node physiology could no longer be demonstrated and neither AV nodal echoes nor AVNRT could be induced with and without isoproterenol infusion.

Modification of the slow pathway was defined as the persistence of dual AV node physiology and inducible 1-3 AV nodal echo beats but no inducible AVNRT with and without isoproterenol infusion.

Catheter-induced mechanical trauma to slow and/or fast pathway was observed in 121(13.4%) of the study patients. A separate report dealing with this observation will be published elsewhere.

Follow-up

The patients were followed at the outpatient clinic every 6 months during the first year after the procedure. Thereafter they were instructed to contact the laboratory in case of recurrent PSVT or rapid palpitations similar to the spontaneous episodes.

Definitions

Dual AV node physiology was defined as a ≥ 50 msec increment in atrium-to-His (AH) or PR interval following a 10 msec decrement in coupling interval during single atrial extrastimulation or a ≥ 50 msec increment in AH or PR interval in consecutive beats after a 10 msec decrement in pacing cycle length during incremental atrial pacing [15].

Electrophysiologic study

After the patients gave informed consent, the electrophysiologic study was performed using standard techniques [16]. In the early years a multi-catheter approach was used, including the placement of three diagnostic electrode catheters in the coronary sinus, the right ventricular apex and the His bundle area, as well as an ablation catheter. Later, a “two-catheter approach” using a single diagnostic electrode catheter (placed in the high right atrium) and an ablation catheter was employed. A multi-catheter approach was also used for ablation of AVNRT when the mechanism of PSVT was unclear or after ablation of another arrhythmia. The ablation catheter was usually a Mansfield/Cordis/Webster catheter (temperature-guided or not) and less commonly a temperature-guided catheter (EP Technologies, Boston Scientific, MA, USA).

The baseline electrophysiologic study included atrial stimulation (rapid atrial pacing and/or delivery of one to three extrastimuli) as well as ventricular stimulation if AVNRT was not induced with atrial stimulation. If sustained AVNRT (lasting ≥ 30 sec) was not induced with this protocol, isoproterenol (1 μg/min) was administered at incremental dosage until the basic sinus rhythm increased by ≥ 20%, and the stimulation protocol was repeated.

Definitions

Dual AV node physiology was defined as a ≥ 50 msec increment in atrium-to-His (AH) or PR interval following a 10 msec decrement in coupling interval during single atrial extrastimulation or a ≥ 50 msec increment in AH or PR interval in consecutive beats after a 10 msec decrement in pacing cycle length during incremental atrial pacing [15].

Ablation procedure

RFA of the slow AV nodal pathway was performed according to a standard combined electrophysiologic-anatomic approach [17]. Briefly, the catheter tip of the ablation catheter was positioned at the His bundle area and progressively withdrawn along the tricuspid annulus, starting at the most posterior site (near the coronary sinus ostium) and progressing to the more anterior locus (closer to the His bundle recording site). RF energy was delivered with a temperature setting of 55–60°C using an initial 26 Watts power that was gradually increased up to 60 Watts if necessary. If an accelerated junctional rhythm was recognized within 30 seconds, the energy delivery was continued for a total of 1 minute. Administration of RF energy was discontinued upon occurrence of AV block, very rapid junctional rhythm, retrograde block during junctional rhythm, impedance rise, catheter displacement or severe chest pains.

Ablation of the slow pathway was diagnosed when, after RF application, dual AV node physiology could no longer be demonstrated and neither AV nodal echoes nor AVNRT could be induced with and without isoproterenol infusion.

Modification of the slow pathway was defined as the persistence of dual AV node physiology and inducible 1-3 AV nodal echo beats but no inducible AVNRT with and without isoproterenol infusion.

Catheter-induced mechanical trauma to slow and/or fast pathway was observed in 121(13.4%) of the study patients. A separate report dealing with this observation will be published elsewhere.

Follow-up

The patients were followed at the outpatient clinic every 6 months during the first year after the procedure. Thereafter they were instructed to contact the laboratory in case of recurrent PSVT or rapid palpitations similar to the spontaneous episodes.

Statistics

All continuous variables were presented as mean ± standard deviation and all categorical variables were presented as number of patients and percentages. For all continuous variables the comparisons between the four study groups were done using one-way analysis of variance (ANOVA) and for categorical variables using Cramer’s V under chi-square analysis. For all statistical analyses a P value < 0.05 was considered statistically significant. The SPSS statistical package was used to perform all statistical analyses (SPSS Inc., Chicago, IL, USA).

Results

Patient characteristics [Table 1]

The patient population comprised 554 females (61.5 %) and 347 males (38.5%), ranging in age from 9 to 92 years (mean 50.8 ± 18.2). Thirty-seven patients (4.1%) were ≤ 18 years old and 85 (9.4%) were ≥ 75. Group 1 was the youngest and group 4 the oldest (P < 0.0005 for trend). Underlying heart disease was present in 75 patients (8.3%) including coronary artery disease (6.7%), valvular heart disease (1.0%), cardiomyopathy (0.2%), and miscellaneous diseases (0.4%).

Electrophysiologic characteristics

During electrophysiologic study, 140 patients were found to have an associated arrhythmia which was also subjected to RFA. 91 patients (10.1%) had atrial tachyarrhythmias, 25 (2.8%) had an accessory pathway, 20 (2.4%) had idiopathic right or left outflow tract ventricular arrhythmias, 3 (0.4%) had post-myocardial infarction ventricular tachycardia, and one patient had idiopathic left ventricular tachycardia (“Belhassen type”).

The mechanism of tachycardia during electrophysiologic study was slow/fast (“typical”) AVNRT in 833 patients (92.5%), fast/slow (“atypical”) AVNRT in 23 (2.6%), slow/intermediate AVNRT in 17 (1.9%) and slow/fast and fast/slow AVNRT in 7 (0.8%), while it involved various slow pathways in 21 patients (2.3%). There were no significant differences between the study groups in terms of associated arrhythmia or AVNRT mechanism.

Catheter ablation results

RFA was acutely successful in 877 patients (97.3%); slow pathway ablation was achieved in 452 patients (51.5%) and slow pathway ablation was achieved in 452 patients (51.5%) and slow pathway ablation was achieved in 452 patients (51.5%) and slow pathway ablation was achieved in 452 patients (51.5%)}
modification in 411 (46.9%) while in the remaining 14 patients (1.6%) various combinations of pathways were ablated. In 14 patients (1.6%) the procedure was discontinued before AVNRT elimination due to either of the following: a) the patient's desire or the physician's fear of inducing AV block; b) catheter-induced mechanical trauma to fast and/or slow AV nodal pathway. In 10 patients (1.1%) the procedure failed following multiple attempts. No significant difference between the study groups was found with regard to procedural success [Table 1].

The great majority (92.1%) of slow pathways were ablated at posterior sites (P1–P2) close to the coronary sinus ostium [4]. The mean number of RF applications given to achieve successful ablation was 5.0 ± 5.9. No significant difference between the study groups was found in terms of the number of successful ablation pulses.

A "two-catheter approach" was used in 584 patients (64.8%) while a multi-catheter approach was used in the remaining 317 (35.2%). A "two-catheter approach" was more frequently performed in the last three patient groups as compared to the first group (P < 0.0005 for trend) [Table 1]. However, there were no significant differences in terms of procedure success rate or complications (mainly AV block) between the “two-catheter” and the multi-catheter groups.

Procedural complications

No complications were observed in 864 patients (95.9%). In 31 patients (3.4%) transient or permanent second- or third-degree AV block occurred during the procedure. Eight of these 31 patients (26%), representing 0.9% of all study patients, required pacemaker implantation (n=7) or upgrade of a previously implanted VVI.
Comparison with previous reports
During the last decade several studies reporting the results of RFA of AVNRT have been published. The success, the frequency of arrhythmia recurrence, and incidence of major complications reported in the present study are similar to results from these prior reports including multi-center studies [2-15]. To the best of our knowledge, our study is the largest single-center study ever reported. Interestingly, our results showed that the learning curve rates were rapidly achieved with a very high success rate obtained in the first study quartile (96%), which remained stable over the years.

Two-catheters vs. multi-catheter technique
In most laboratories, RFA of AVNRT is performed after introduction of multiple diagnostic catheters in the high right atrium/ coronary sinus, His bundle area, and right ventricular apex, along with an ablation catheter. This multi-catheter approach affords optimal documentation of dual AV node physiology, easy pacing from multiple sites and enables safe emergency pacing in case of occurrence of complete AV block. In addition, the continuous documentation during RF application of the His bundle activity as compared to the position of the ablation catheter is expected to increase the safety of the procedure. In the present study, a “two-catheter” approach (a diagnostic catheter in the right atrium and the ablation catheter) was performed in about two-thirds of our patients. No significant differences in terms of procedure success rate and complications were found using this two-catheter approach as compared to the multi-catheter approach. This two-catheter approach has the advantages of reducing procedure time and cost, patient discomfort and probably exposure to X-ray.

Comparison between the different study groups
A significant progressive increase in the age of patients and associated cardiac disease was found over time in the various study groups. However, this did not result in an increased rate of procedure failure or complications over time, unlike results reported by others [12]. On the contrary, the results observed in our last group of patients were the best, as reflected by the lower incidence of iatrogenic AV block requiring pacemaker implantation (0.4%).

RFA as first-line therapy
RFA improves health-related quality of life to a greater extent than do medications [18,19] and was the least expensive therapy as compared to drug therapy options among patients who have monthly episodes of PSVT. AVNRT is readily amenable to definitive therapy by catheter-based RF energy delivery at the slow pathway area. Results from the present and other series [2-15] have shown this strategy to be both safe and effective, supporting ablation therapy as first-line therapy for the majority of patients, especially young patients.

Study limitations
The patients were followed every 6 months during the first year following the procedure, and were instructed to contact the labo-

pery only in case of recurrent PSVT or rapid palpitations similar to the spontaneous episodes. Therefore, one cannot exclude a recurrent arrhythmia rate higher than what we observed. In addition, we did not take into account the occurrence of extrasystolic palpitations, which are commonly observed during follow-up, since these have been shown to be poor predictors of PSVT recurrence [20].

Conclusions
The results of this single-center large-size study in patients with a wide age range confirm the extraordinary efficacy and relative safety of RFA of AVNRT, especially in young patients in whom it should be offered as first-line therapy. In addition, we found that the use of a “two-catheter” approach (one diagnostic and one ablation) was as effective and safe as a multi-catheter approach.

Acknowledgments.
We thank Dr. R. Fish for his invaluable help and support in designing our computerized electrophysiologic program. We also thank Dr. M. Ilan (Shaare Zedek Medical Center, Jerusalem), Dr. R. Fish and Dr. R. Rosso for their help in the management of some of the patients in the study.

References
10. Hindricks G. Incidence of complete atrioventricular block following attempted radiofrequency catheter modification of the atrioventricular node in 880 patients. Results of the Multicenter European Radiofrequency Survey (MERFS) The Working Group on

Correspondence: Dr B. Belhassen, Dept. of Cardiology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 64239, Israel. Phone/Fax: (972-3) 697-4418 email: bblhass@tasmc.health.gov.il

Capsule

Genetics and pituitary tumors

Pituitary adenomas are slow-growing, generally benign, tumors that may occur in as much as 25% of the population. These tumors can pose serious health risks through mechanical compression of adjacent tissue and/or through altered secretion of pituitary-derived hormones, such as growth hormone. Little is known about the molecular mechanisms by which these tumors arise. Taking advantage of genealogy data in Finland dating back to the 1700s, Vierimaa and team discovered that many individuals with pituitary adenomas are genetically predisposed to develop these tumors because they carry mutations in the gene encoding the aryl hydrocarbon receptor interacting protein (AIP). These results should facilitate the identification of at-risk individuals as well as stimulate research into the functional role of AIP in the pathogenesis of these tumors.

Science 2006;312:1228

Eitan Israeli

Capsule

Runxing for bigger bones

Adult bone mass is determined by the rates of bone formation by osteoblasts and bone resorption by osteoclasts. Genetic mutations that disrupt the function of these cells can lead to problems with skeletal development, including excessive postnatal bone formation. Pivotal in osteoblast differentiation is the transcriptional regulator Runx2. Jones and colleagues reveal how this master control protein is itself regulated. Mice lacking the adapter protein Schnurri-3 accumulated bone mass because of increased osteoblast activity resulting from abnormal Runx2 turnover within the cell. Runx2 is normally regulated by ubiquitin-mediated degradation through the Schnurri-3-dependent association with the E3 ubiquitin ligase WWPI. The identification of this upstream pathway regulating postnatal bone formation might help reveal therapeutic avenues for treating bone abnormalities and deficiencies, such as osteoporosis.

Science 2006;312:1223

Eitan Israeli