Lactobezoar and Necrotizing Enterocolitis in a Preterm Infant

Dror Mandel MD MHA, Ronit Lubetzky MD, Francis B. Mimouni MD and Shaul Dollberg MD

Department of Neonatology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel

Key words: lactobezoar, necrotizing enterocolitis

Necrotizing enterocolitis occurs in a sizable proportion of preterm infants. In a report from the National Institute of Child Health and Development Neonatal Research Network, 7% of very low birth weight infants (<1,500 g birth weight) suffered from proven NEC [1]. Despite many theories on the pathogenesis of NEC, the mechanisms by which preterm infants develop NEC are still unclear and are probably multifactorial. Another gastrointestinal complication of prematurity is the formation of lactobezoars [2]. To the best of our knowledge, and according to a Medline search including the key words “lactobezoar,” “bezoar” and “necrotizing enterocolitis,” the coexistence of lactobezoar and NEC has not been reported previously. We present here the case of an infant who presented with both lactobezoar and NEC, and discuss the possible relationship between the two entities.

Patient Description

A 29 week gestation male infant was delivered at the Lis Maternity Hospital at the appropriate birth weight for gestational age of 1,230 g. Maternal history was unremarkable, although the pregnancy was complicated by urinary tract infection and spontaneous preterm labor. The infant was delivered in a spontaneous vaginal vertex fashion. The immediate post-delivery course was complicated by respiratory distress syndrome (managed by high frequency oscillatory ventilation and exogenous surfactant administration) and patent ductus arteriosus (which was closed successfully after one course of indomethacin). The infant developed pulmonary interstitial emphysema, with subsequent moderate chronic lung disease necessitating ventilation until day 21 of life. The infant was started on feeds on day 5 of life, reaching 120 ml/kg weight of human milk and diluted Similac Special Care (12 cal/oz) (Ross Products Division, Abbott Laboratories, Columbus, OH, USA) within 5 days.

On day 10 of life he developed significant abdominal distension. Abdominal anterior-posterior X-ray (Figure) revealed a grainy gastric mass, outlined by air (arrow A), compatible with lactobezoar. It also revealed extensive intestinal pneumatosis (arrow B) and distended bowel, characteristic of necrotizing enterocolitis. Repeated gastric lavage with 0.9% NaCl solution resulted in suctioning of undigested milk curds and, radiographically, in successful evacuation of the bezoar. Three weeks later, after reintroduction of enteral feeding, the infant developed intestinal obstruction that presented as an abdominal mass on palpation, abdominal wall hyperemia and edema. During surgery, intestinal perforation was diagnosed that necessitated resection of a long portion of the small and large bowel. The infant died shortly after surgery. Postmortem examination confirmed the diagnosis of NEC, and the histologic examination of the specimen obtained during surgery revealed extensive necrotizing enterocolitis with multiple perforations.

Comment

The term bezoar is derived from Persian (meaning antidote for poisons), and refers to a gastrointestinal foreign body. Lactobezoar (undigested milk curds) was first described in 1959 [3] and is the most common type of bezoars in infants as compared to other bezoar types – tricho-bezoars (hair matter), phytobezoars (vegetable matter), and trichophytobezoar (combination of the two) [4]. Infants with a lactobezoar may be asymptomatic or may produce a wide range of gastrointestinal symptoms and findings, including feeding intolerance. The most common gastrointestinal symptoms are abdominal distension, gastric residuals, emesis and bloody stools, which may mimic necrotizing enterocolitis. The pathogenesis of lactobezoars is unclear. Several possible contributing factors have been suggested. The majority of lactobezoars has been described in preterm infants who were fed “preterm formulas” with high casein/whey ratios, protein content, calcium, and med-
ium chain triglycerides. The role of a high casein/whey ratio has been challenged by the fact that lactobezoars have been described also in infants who were fed whey-dominant formulas or even human milk. This was the case in our patient since he received human milk and a whey-dominant “preterm” formula. Also, as we reported previously, gastric emptying time of whey-dominant and of casein-dominant formulas are almost identical. Physiologic factors that may contribute to the formation of lactobezoars in preterm infants include delayed gastric emptying and decreased gastric acid output. Nevertheless, the common denominator of most reported cases or mini-series of lactobezoars is that they occur almost exclusively in preterm infants [2-4].

On the basis of our Medline search, the coexistence of lactobezoar and necrotizing enterocolitis has not been reported previously. In theory, if the two conditions are associated, it may be through various mechanisms: if the bezoar preceded NEC, it is possible that intestinal distension due to obstruction, induced by fragments of the bezoar that migrated into the intestine, may have contributed to ischemic lesions of the intestinal mucosa. Alternatively, if NEC preceded the lactobezoar, it may have done so through paralytic ileus resulting in the presence of undigested clotted milk in the stomach that may have facilitated the lactobezoar formation. Since both conditions coexisted on the first abdominal X-ray, we can only speculate about the chain of events.

Also, in theory, one may wonder whether the intestinal perforation that occurred later in the course of the disease may have been related to the lactobezoar, as published in one report [5]. This is not very likely, since in our case extensive intestinal necrosis and perforation was observed on pathologic examination, while in the case reported by Levkoff et al. [5] the perforation was punctual, gastric and may have been a complication of gastric lavage. We conclude that lactobezoars and NEC may coexist and are possibly causally related.

References

Correspondence: Dr. S. Dolfberg, Dept. of Neonatology, Lls Maternity Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 64239, Israel.
Phone: (972-3) 692-5690, 635-2383
Fax: (972-3) 369-25681
email: dolfberg@tasmc.health.gov.il

Capsule

Fighting TB in the presence of HIV

Antiretroviral drugs have the potential to halt the rapid growth of human immunodeficiency virus (HIV)-related tuberculosis (TB), which is threatening to undo the worldwide progress in TB control. Williams and Dye used mathematical modeling to suggest that the immediate role for antiretroviral drugs in TB control will be to improve the quality of treatment for patients and to provide an entry point for antiretroviral therapy, rather than to prevent new cases.

Science 2003;301:1535

E. Israeli

Capsule

From stem cells to sperm

Embryonic stem (ES) cells can generate all lineages of the embryo in vivo. However, it has not been clear whether germ cells can be derived from ES cells in vitro. Recently, Hubner et al. were able to produce oocytes from mouse embryonic stem cells. Toyooka and co-workers demonstrated that ES cells can also generate male germine cells in vitro. Cells were dissociated from embryoid bodies, grown with bone morphogenic protein 4-expressing cells, and then co-cultured with male gonadal cells before transplantation into a host testis capsule. The ES-derived cells differentiated into cells that expressed a characteristic marker of meiotic spermatogenic cells. When transplanted into reconstituted testicular tubules, the cells could develop into sperm. The cells produced probably represent primordial germ cells, which migrate into the fetal gonad where they will undergo meiosis and produce sperm. It will now be of interest to see if viable progeny can be produced using these cells.

Proc Natl Acad Sci USA 2003;100:11457

E. Israeli

896 D. Mandel et al.